Hungry black hole may be cosmic ‘missing link’

Hungry black hole may be cosmic ‘missing link’


Image copyright
ESA/Hubble, M. Kornmesser

Image caption

Artwork: The presumed black hole revealed itself by tearing apart a star that ventured too close

A team of astronomers has found what it says is the best evidence yet for an elusive class of black hole.

They say the presumed “intermediate mass” black hole betrayed its existence by tearing apart a wayward star that ventured too close.

These medium-sized holes are a long-sought “missing link” in the evolution of black holes.

Researchers used two X-ray observatories, along with the Hubble telescope, to identify the object.

“Intermediate mass black holes are very elusive objects, and so it is critical to carefully consider and rule out alternative explanations for each candidate, said Dr Dacheng Lin, from the University of New Hampshire in Durham, US, who led the study.

“That is what Hubble has allowed us to do for our candidate.”

In 2006, Nasa’s orbiting Chandra X-ray Observatory and the European Space Agency’s XMM-Newton satellite spotted a powerful X-ray flare named 3XMM J215022.4−055108.

The nature of the X-ray flare meant that it could be explained by just two scenarios, according to Dr Lin. It was either a distant intermediate mass black hole – located outside our galaxy – that was disrupting and swallowing a star, or a neutron star in our own galaxy cooling off after being heated to a very high temperature.

Neutron stars are the crushed remnants of an exploded star.

Image copyright
NASA GSFC/Jeremy Schnittman

Image caption

Artwork: Black holes come in different sizes, but the mid-sized type has proved elusive

In order to distinguish between the two scenarios, the Hubble Space Telescope was pointed at the X-ray source to resolve its precise location. The telescope provided strong evidence that the X-rays emanated not from an isolated source in our galaxy, but in a distant, dense star cluster on the outskirts of a different galaxy.

This was just the type of place astronomers expected to find a mid-sized black hole.

So-called supermassive black holes are commonly found at the centres of galaxies; for example, our own Milky Way hosts a massive central black hole called Sagittarius A*. But intermediate mass black holes have been particularly difficult to find because they are smaller and less active than the massive types. In addition, they don’t have as much nearby cosmic material to act as fuel, and lack the strong gravitational pull required to draw stars inwards to produce X-ray flares.

Astronomers effectively have to catch a mid-sized black hole red-handed in the act of gobbling up a star.

Image copyright
NASA

Image caption

The Hubble Space Telescope was used for resolve the location of the X-ray flare

That’s exactly what Dr Lin and his colleagues did, combing through thousands of XMM-Newton observations to find one candidate.

The X-ray glow from the shredded star allowed astronomers to estimate the black hole’s mass at 50,000 times the mass of the Sun.

This isn’t the first candidate for a mid-sized black hole. But seeing the object tearing a star apart makes this detection the strongest yet, according to the Dr Lin’s team.

Intermediate mass black holes are key to many questions about black hole evolution. For example, does a super-massive black hole grow from a mid-sized one?

Astronomers also want to understand how mid-sized black holes form and whether they tend to reside in dense star clusters, such as this one.

The results are published in The Astrophysical Journal Letters.

Follow Paul on Twitter.





Source link

About The Author

We report the News from around the Globe. Please support our advertisers.

Related posts

Leave a Reply